Role of oscillations in membrane potential, cytoplasmic Ca2+, and metabolism for plasma insulin oscillations.
نویسنده
چکیده
A model for the relationship between ionic and metabolic oscillations and plasma insulin oscillations is presented. It is argued that the pancreatic beta-cell in vivo displays two intrinsic frequencies that are important for the regulation of plasma insulin oscillations. The rapid oscillatory activity (2--7 oscillations [osc] per minute), which is evident in both ionic and metabolic events, causes the required elevation in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) for the exocytosis of insulin granules. This activity is important for regulation of the amplitude of plasma insulin oscillations. The frequency of the rapid oscillatory ionic activities is regulated by glucose and allows the beta-cell to respond in an analogous way, with gradual changes in [Ca(2+)](i) and insulin release in response to the alterations in glucose concentration. The slower oscillatory activity (0.2--0.4 osc/min), which is evident in the metabolism of the beta-cell, has a frequency corresponding to the frequency observed in plasma insulin oscillations. The frequency is not affected by changes in the glucose concentration. This activity is suggested to generate energy in a pulsatile fashion, which sets the frequency of the plasma insulin oscillations. It is proposed that the slow oscillations in [Ca(2+)](i) observed in vitro are a manifestation of the metabolic oscillations and do not represent an in vivo phenomenon.
منابع مشابه
Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum.
Stimulatory concentrations of glucose induce two patterns of cytosolic Ca2+ concentration ([Ca2+]c) oscillations in mouse islets: simple or mixed. In the mixed pattern, rapid oscillations are superimposed on slow ones. In the present study, we examined the role of the membrane potential in the mixed pattern and the impact of this pattern on insulin release. Simultaneous measurement of [Ca2+]c a...
متن کاملOscillations of cytosolic free calcium in bombesin-stimulated HIT-T15 cells.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+]i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 microM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [C...
متن کاملRole of Oscillations in Membrane Potential, Cytoplasmic Ca , and Metabolism for Plasma Insulin Oscillations
A model for the relationship between ionic and metabolic oscillations and plasma insulin oscillations is presented. It is argued that the pancreatic -cell in vivo displays two intrinsic frequencies that are important for the regulation of plasma insulin oscillations. The rapid oscillatory activity (2–7 oscillations [osc] per minute), which is evident in both ionic and metabolic events, causes t...
متن کاملPlasma membrane Ca(2+)-ATPase overexpression reduces Ca(2+) oscillations and increases insulin release induced by glucose in insulin-secreting BRIN-BD11 cells.
In the mouse beta-cell, glucose generates large amplitude oscillations of the cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) that are synchronous to insulin release oscillations. To examine the role played by [ Ca(2+)](i) oscillations in the process of insulin release, we examined the effect of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on glucose-induced Ca(2+) oscillations and ins...
متن کاملPlasma membrane potential oscillations in insulin secreting Ins-1 832/13 cells do not require glycolysis and are not initiated by fluctuations in mitochondrial bioenergetics.
Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic β-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 51 Suppl 1 شماره
صفحات -
تاریخ انتشار 2002